首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2415篇
  免费   107篇
  国内免费   19篇
化学   1735篇
晶体学   17篇
力学   20篇
数学   359篇
物理学   410篇
  2023年   14篇
  2022年   15篇
  2021年   47篇
  2020年   57篇
  2019年   68篇
  2018年   53篇
  2017年   54篇
  2016年   107篇
  2015年   84篇
  2014年   109篇
  2013年   176篇
  2012年   175篇
  2011年   219篇
  2010年   128篇
  2009年   111篇
  2008年   165篇
  2007年   145篇
  2006年   137篇
  2005年   95篇
  2004年   94篇
  2003年   63篇
  2002年   61篇
  2001年   24篇
  2000年   14篇
  1999年   12篇
  1998年   23篇
  1997年   13篇
  1996年   18篇
  1995年   15篇
  1994年   8篇
  1993年   19篇
  1992年   11篇
  1991年   13篇
  1990年   8篇
  1989年   9篇
  1988年   7篇
  1987年   17篇
  1986年   8篇
  1985年   10篇
  1983年   7篇
  1981年   6篇
  1980年   7篇
  1977年   6篇
  1975年   7篇
  1972年   5篇
  1970年   6篇
  1968年   8篇
  1966年   7篇
  1958年   6篇
  1955年   9篇
排序方式: 共有2541条查询结果,搜索用时 31 毫秒
51.
Tellurium–peroxo complexes in aqueous solutions have never been reported. In this work, ammonium peroxotellurates (NH4)4Te2(μ‐OO)2(μ‐O)O4(OH)2 ( 1 ) and (NH4)5Te2(μ‐OO)2(μ‐O)O5(OH)?1.28 H2O?0.72 H2O2 ( 2 ) were isolated from 5 % hydrogen peroxide aqueous solutions of ammonium tellurate and characterized by single‐crystal and powder X‐ray diffraction analysis, by Raman spectroscopy and thermal analysis. The crystal structure of 1 comprises ammonium cations and a symmetric binuclear peroxotellurate anion [Te2(μ‐OO)2(μ‐O)O4(OH)2]4?. The structure of 2 consists of an unsymmetrical [Te2(μ‐OO)2(μ‐O)O5(OH)]5? anion, ammonium cations, hydrogen peroxide, and water. Peroxotellurate anions in both 1 and 2 contain a binuclear Te2(μ‐OO)2(μ‐O) fragment with one μ‐oxo‐ and two μ‐peroxo bridging groups. 125Te NMR spectroscopic analysis shows that the peroxo bridged bitellurate anions are the dominant species in solution, with 3–40 %wt H2O2 and for pH values above 9. DFT calculations of the peroxotellurate anion confirm its higher thermodynamic stability compared with those of the oxotellurate analogues. This is the first direct evidence for tellurium–peroxide coordination in any aqueous system and the first report of inorganic tellurium–peroxo complexes. General features common to all reported p‐block element peroxides could be discerned by the characterization of aqueous and crystalline peroxotellurates.  相似文献   
52.
The sensing and accurate determination of antibiotics in various environments represents a big challenge, mainly owing to their widespread use in medicine, veterinary practice, and other fields. Therefore, a new, simple electrochemical sensor for the detection of antibiotic chloramphenicol (CAP) has been developed in this work. The amplification strategy of the sensor is based on the application of magnetite nanostructures stabilized with carboxymethyl cellulose (Fe3O4‐CMC) and decorated with nanometer‐sized Au nanoparticles (NPs) (Fe3O4‐CMC@Au). In this case, CMC serves as a stabilizing agent, preventing the aggregation of Fe3O4 NPs, and hence, enabling the kinetic barrier for electron transport to be overcome, and the Au NPs serve as an electron‐conducting tunnel for better electron transport. As a proof of concept, the developed nanosensor is used for the detection of CAP in human urine samples, giving a recovery value of around 97 %, which indicates the high accuracy of the as‐prepared nanosensor.  相似文献   
53.
A series of new hypervalent iodine reagents based on the 1,3‐dihydro‐3,3‐dimethyl‐1,2‐benziodoxole and 1,2‐benziodoxol‐3‐(1H)‐one scaffolds, which contain a functionalized tetrafluoroethyl group, have been prepared, characterized, and used in synthetic applications. Their corresponding electrophilic fluoroalkylation reactions with various sulfur, oxygen, phosphorus, and carbon‐centered nucleophiles afford products that feature a tetrafluoroethylene unit, which connects two functional moieties. A related λ3‐iodane that contains a fluorophore was shown to react with a cysteine derivative under mild conditions to give a thiol‐tagged product that is stable in the presence of excess thiol. Therefore, these new reagents show a significant potential for applications in chemical biology as tools for fast, irreversible, and selective thiol bioconjugation.  相似文献   
54.
An analysis of suspended particulate matter, with an emphasis on the Hg chemical forms, is presented. Dust samples originating from an area highly affected by traffic pollution in the city of Prague (Czech Republic) were sampled over a period of three years from air-conditioner filters and fractioned by size. The samples were morphologically characterised by scanning electron microscopy. The main method used for the analysis of constituent mercury compounds was sequential extraction by leaching solutions in combination with thermal desorption. The total mercury content ranged from 0.37 mg kg?1 to 0.82 mg kg?1. It emerged that the mercury was distributed in a wide spectrum of forms, and various trends in the distribution of these forms among the different size classes were observed. The fraction leached by nitric acid (consisting of elemental and complex-bound mercury) was the main constituent of total mercury. The highest content of this fraction was observed in the finest particle size class. The heterogeneity of morphology of the material increased with the size fraction.  相似文献   
55.
Kominkova  Marketa  Michalek  Petr  Moulick  Amitava  Nemcova  Barbora  Zitka  Ondrej  Kopel  Pavel  Beklova  Miroslava  Adam  Vojtech  Kizek  Rene 《Chromatographia》2014,77(21):1441-1449

Biosynthesis belongs to one of the new possibilities of nanoparticles preparation, whereas its main advantage is biocompatibility. In addition, the ability of obtaining the raw material for such synthesis from the soil environment is beneficial and could be useful for remediation. However, the knowledge of mechanisms that are necessary for the biosynthesis or effect on the bio-synthesizing organisms is still insufficient. In this study, we attempted to evaluate the effect of quantum dots (QDs) not only on a model organism of collembolans, but also on another soil organism—earthworm Eisenia fetida—and in also one widespread microorganism such as Escherichia coli. Primarily, we determined 28EC50 as 72.4 μmol L−1 for CdTe QDs in collembolans. Further, we studied the effect of QDs biosynthesis in E. fetida and E. coli. Using determination of QDs, low-molecular thiols and antioxidant activities, we found differences between both organisms and also between ways how they behave in the presence of Cd and/or Cd and Te. The biosynthesis in earthworms can be considered as its own protective mechanism; however, in E. coli, it is probably a by-product of protective mechanisms.

  相似文献   
56.
57.
Another new substance from the family of Pt‐based coordination complexes with potential use in cancer chemotherapy has been synthesized, crystallized and structurally characterized. In this compound {systematic name cis‐dibromido[(1R,2R)‐cyclohexane‐1,2‐diamine‐κ2N,N′]platinum(II)}, cis‐[PtBr2(C6H14N2)], there are two molecules with very similar conformations in the asymmetric unit. The component species interact by way of N—H...Br and C—H...Br hydrogen bonds to give two‐dimensional networks which lie parallel to the (100) plane.  相似文献   
58.
Chemistry and physics of thin semiconducting layers of various types are subjects of intense research. Especially when nanotechnology methods such as self-assembly are involved, amazing structural and/or functional properties may appear. Also modern physical methods using variously organized plasma arrangements are able to produce uniform structures with distinctive functionality. In this review, based virtually on our own work, discussions on the preparation, structure, morphology, and function of titanium(IV) oxide nanoscopic thin films are presented. It was shown that structurally and functionally similar titanium(IV) oxide films can be prepared via completely different preparation techniques. Function tests were arranged as “primary”, covering the assessment of the light induced charge separation efficiency, and “secondary”, based on photocatalytic surface oxidations.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号